A study of chemical ultra thin silicon oxide films by FTIR-ATR and ARXPS after wet cleaning processes.

D. Rouchon¹, N Rochat¹, F. Gustavo¹, A. Chabli¹, O. Renault¹ and P. Besson². ¹ LETI (CEA-Grenoble), 17 Av. des Martyrs, 38054 Grenoble Cedex 9, France, ² ST (ST-Crolles), 850 rue Jean Monnet 38926 Crolles, France,

Introduction

The development of advanced CMOS devices will require a gate dielectric thickness in the order of 0.5 to 1 nm (equivalent oxide thickness EOT) in order to control the gate capacitance, and the drive current capability of CMOS transistors. The gate capacitance control will be achieved by introducing high k to materials instead of conventional thermal on silicon oxide. Most of the investigated high k materials (HfO₂, ZrO₂; Hf and Zr silicates, lantha-mide oxides,...) are not really compatible with Si. They exhibit a tendency to react with crystalline Si and to form an interfacial layer, generally composed in a mixture of the high k layer and SiO2. In order to prevent the growth of any uncontrolled interfacial layer between the high k layer and silicon substrate, an ultra thin SiO, layer is prepared using chemical and/or thermal techniques. The chemical composition of this chemical SIO₂ layer, which has been prepared using RCA, RHO₃ and DDC, has been investigated using ARXPS and ATR-FTIR.

Sample preparation

Solution

RCA=SC1(65°C) + Rinse (50°C) + SC2 (65°C) +Rinse (50°C) SC1 = (NH₄OH/H₂O₂/DIW) SC2 (HCI/H_O_/DIW) DDC = 6ppm O3/0.01%HCl RHO₂ Standard RCA + diluted HF+ 6ppm O₂/0.01%HCl

EXPERIMENTAL

S.Probe Surface Spectrometer System

 Al Kα-Xray source · Hemispherical analyser Angle-Resolved X-ray Photoemission Spectroscopy (ARXPS) • FWHM = 0.73eV with a spot size of $250 \times 1000 \mu m^2$ (Au (4f72))

RESULTS

ARXPS

· Si2p core level spectrum : three peaks between the Si and the SiO₂ lines can be identified, which correspond to the three Si2p spectrum

, possible sub-oxide states, usually denoted Si1+, Si2+, Si3+

• O1s peak is simulated with one component attributed to both Si-O and C-O-H bonds. Nevertheless, an asymmetry of the peak at high

binding energy is sometimes observed. This state could be attributed to physi- or chemisorbed oxygen.

Atomic concentrations of SiO, and sub-oxides. SiO, and sub-oxides ratio as a function of the silicon oxides

After thermal annealing SC1 and DDC

tendency to form SiO, · SiO, component increases. sub-oxide species components decrease RCA and RHO₃ the rearrangement is into sub-oxide lattice.

Si-H region

Si-O-Si region • RHO₃ and DDC oxydes are more «thermal like» than SC1 and RCA before annealing Annealing increase the order in the oxide layer, but DDC and RHO₃ are always more «thermal like» than SC1 and RCA

M-P

Discussion

Summary of results is obtained in this study by FTIR-ATR and ARXPS

- (-) Less organization =>(+) => (++)=>(+++) more organization (Terms of stress, voids, sub-oxides and roughness)
- · SiO, -: tends toward SiO,
- · Interface: the rearrangement is into sub-oxide

FTIR-ATR	RCA	SCI	RHO ₃	DDC	ARXPS	RCA SCIRHO3 DDC
Before thermal annealing	(-)	(-)	(+)	(+)	Before thermal annealing	All the oxides present have nearly the same chemical structure
After thermal annealing	(++)		(+++)	(+++)	After thermal annealing	Interface SiO2

Conclusion

After thermal annealing of chemical oxides, ARXPS and FTIR-ATR results shows reorganization of the interface or of the volume of all oxides. Two kinds of rearrangement have been detected, a rearrangement of the whole oxide layer, or a growth of the silicon oxide at the interface. ARXPS measurements show their ability to characterize interfaces compounds. FTIR-ATR measurements give a detailed investigation of the whole layer chemical structure.

The proof has been made of the utility of using both of these two techniques in order to have a whole characterization of layers properties (interface and thickness).